# Assignment 1 Karel Solutions Real Estate

^{1}Faculty of Mechanical Engineering, Institute of Transport, VŠB-Technical University of Ostrava, 17 Listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic^{2}Faculty of Transportation Sciences, Department of Logistics and Management of Transport, Czech Technical University in Prague, Konviktská 20, 110 00 Prague, Czech Republic

Copyright © 2015 Dušan Teichmann et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper focuses on solving the problem of how to assign locomotives to assembled trains optimally. To solve the problem, linear programming is applied. The situation we model in the paper occurs in the conditions of a transport operator that provides rail transport in the Czech Republic. In the paper, an extended locomotive assignment problem is modeled; the transport operator can use different classes of the locomotives to serve individual connections, some connections must be served by a predefined locomotive class, and the locomotives can be allocated to several depots at the beginning. The proposed model also takes into consideration the fact that some connections can be served by the locomotives of external transport companies or operators. The presented model is applied to a real example in order to test its functionality.

#### 1. Introduction: Our Motivation to Solve the Problem

Optimization methods are of vital importance for transport processes. The optimization methods can be employed especially to control the transport processes. By using the optimization methods, we can solve a lot of problems related to rail, road, public, air, or water transport. Our paper is devoted to an application of the optimization methods in rail transport. The problem that we solve in the paper is generally known as the vehicle scheduling problem. The vehicle scheduling problem can be generally formulated as the problem of optimal moving of locomotives or cars. However, there are also special applications of vehicle scheduling. In the paper we present one of the special applications—the problem of the optimal assignment of locomotives to assembled trains. In the literature this problem is denoted most frequently by the* locomotive assignment problem*,* locomotive scheduling problem,* or* locomotive routing problem*. In our contribution we will use the designation* locomotive assignment problem*.

In practice, sometimes it can happen that the transport operator is not able to serve all the connections using its own locomotives only. There are two main reasons for this situation.(i)The transport operator does not own enough locomotives.(ii)The transport operator has enough locomotives but the operator is not willing to use all of them because the operator is awaiting some more lucrative jobs.In such situations some connections can be served by the locomotives that the transport operator hires from other transport operators or companies, external locomotives. It is clear that costs which have arisen from serving the connections by external locomotives must be borne by the transport operator ordering the external locomotives.

The main problems are the following:(i)scheduling the operator’s own locomotives,(ii)planning whether it is necessary or advantageous to serve some connections by external locomotives,(iii)assigning the operator’s own locomotives to the depots (if there are at least two depots)—the own locomotives are allocated to the depots.

Our paper extends the spectrum of existing mathematical models used for solving the locomotive assignment problem by a model devoted to the specific scheduling application. The specification of our paper is the possibility of using external locomotives. The authors have not met with such application in studied literature but the situations often exist in practice (a case study presented in Section 6 confirms the statement).

#### 2. State of the Art

The contributions [1, 2] give very detailed information about the literature dealing with solving the locomotive assignment problem. In particular, we must mention the works [3, 4] and the recent works [5, 6].

Apart from the abovementioned works we must also refer to the following contributions and articles. Article [4] develops the approach from article [7]. The authors propose three different branching methods, which obtain better results in a shorter time in their article. In contribution [8] the authors solve the problem using the vehicle routing problem with time windows. For custom solution a hybrid genetic algorithm is used. The task is solved for more depots and a homogeneous vehicle fleet. In paper [9] a mathematical model minimizing the locomotive turnaround time is included. In the work, a two-stage heuristic algorithm is proposed as well. In the first stage, the optimum locomotive routing connection on the station is solved and the second stage deals with locomotive deadheading and optimization of the locomotive routing on all the stations. In article [10], the authors use the feedback neural network based on Ising Mean Field Approach to approximate stochastic simulated annealing with a deterministic process for solving the locomotive assignment problem. A genetic algorithm is used for solving the locomotive assignment problem in article [11]. The authors propose a two-phase approach. In the first phase, the multidepot locomotive assignment is converted to a set of single depot problems, and in the second phase each single depot problem is solved heuristically by a hybrid genetic algorithm. The results of the locomotive assignment problem achieved using a tabu search metaheuristics algorithm are described in article [12].

The next problem associated with locomotive fuelling strategies is described in article [13]. This article includes a linear mixed-integer mathematical model that integrates not only fuel station location decisions but also locomotive fuelling schedule decisions.

The last important group of contributions describes specific decision support systems for solving the locomotive assignment problem. In the contribution [14] the authors present a proposed system named Locomotive Simulator/Optimizer, which simulates the movement of locomotives across a railroad network. Article [15] describes a decision support system including an algorithm for solving the locomotive assignment problem in which the trains may be delayed.

The articles that motivated us, dealing with scheduling vehicles, were published in the Czech Republic and in Slovakia as well. We can mention the publications [16, 17] and the articles [18–21]. In these publications and articles, the proposed models were usually applied in bus transport.

For solving the locomotive assignment problem with using external locomotives we drew inspiration from the article written by Plevný [22]. The author deals with vehicle scheduling in the travelling salesman problem in which some customers can be served by external vehicles.

#### 3. Basic Terminology Used in the Paper

*Connection*. It is a productive journey of a locomotive (or a group of locomotives) hauling wagons from an* originating railway station* to* a destination railway station*.

*Depot*. It is a place where the locomotives are found when they are not being utilized (a railway yard).

*Own Locomotive*. It is a locomotive which is in the property of the transport operator that serves the connection. The transport operator can own locomotives with different technical parameters. Let a* locomotive class* be all the own locomotives with the same technical parameters.

*External Locomotive*. It is a locomotive that the transport operator uses in cases when the operator does not have enough of its own locomotives to serve a connection or when using its own locomotive is not advantageous for the transport operator.

*Group of Locomotives*. They are two (or more than two if necessary) locomotives of the same class that move together from their departure from an originating depot to their arrival to a destination depot (in other words, several locomotives serving the same connections together form the group of locomotives).

*Relation*. It is a route between an originating railway station and a destination railway station.

#### 4. The Problem Formulation

Let a set of all the locomotive classes that the transport operator uses to serve the connections be given. For each class of the own locomotives a number of the available locomotives and fixed costs of holding the own locomotive in working condition are known. Let us assume that the costs are equal for all the locomotives of the same class and do not depend on the place (the depot) where the locomotive is found at the beginning of the planning period. However, if the assumption was not satisfied, the presented mathematical model could be easily modified.

Let a set of the places where the locomotives must be found at the beginning of the planning period be given. The set usually represents the set of the depots that the transport operator uses.

A set represents the set of all the connections that must be served by the locomotives; it holds that . The number of the locomotives of the class that must be used to serve the connection is defined for each connection (one locomotive or more than one locomotive can be requested to serve the connection). Sometimes it can happen that some classes of the locomotives cannot be used for serving some connections; for example, the electric locomotives cannot be used on railway tracks that are not electrified. And if it is necessary to use at least two locomotives to serve the connection, it is presumed that the locomotives must be of the same class.

The model operates with three types of costs that correspond to the costs resulting from the operation of the own locomotives. Costs are given for each locomotive of the class that departs from the depot , where the locomotive is found at the beginning of the planning period, to serve the connection . The costs represent the costs that are connected with deadheading to the originating railway station of the connection and with serving the connection . Costs correspond to the costs that are associated with deadheading the own locomotive to the defined depot after serving the connection . And finally, let us denote the last group of costs . The costs are the costs for serving the connection arising if the own locomotive class must run from the destination railway station of the connection to the originating railway station of the connection (the connection is served after the connection by the same own locomotive and the destination railway station of the connection differs from the originating railway station of the connection ; the locomotive must deadhead between these railway stations). If the connection is served by the external locomotive then the transport operator must pay a price for serving the connection.

For each connection its scheduled departure time from the originating railway station and its scheduled arrival time at the destination railway station must be given. For each connection we must also define a parameter —how many locomotives of the class we need to serve the connection .

Because it is enabled that after serving the connection the locomotive can serve the connection , we must define the time period that expresses how much time the own locomotive (or the group of locomotives) needs to deadhead between the destination railway station of the connection and the originating railway station of the connection in order to serve the connection .

Our task is to decide whether the individual connections should be served by the own locomotives or by the external locomotives. If the connection should be served by the own locomotives, it is also necessary to choose the suitable locomotive class. Please note that if the connection is served by an external locomotive, then the external transport operator also chooses the suitable locomotive class and therefore we do not solve these cases. Moreover, we must also define where the own locomotives should be found at the beginning of the planning period. The optimization criterion corresponds to the total costs resulting from serving the defined set of connections. It is more than obvious that our goal is to minimize the total costs.

#### 5. The Linear Mathematical Model

To describe the linear mathematical model we must discuss the depots. The depots represent two types of places—the place the own locomotive departs from to serve the planned connections (the originating depot) and the place the own locomotive arrives in after serving the planned connections (the destination depot). In practice it is usual that the originating depot is the same as the destination depot. However, a potential difference between the sets of the originating and destination depots has no influence on the presented mathematical model. A set corresponds to the set of the depots. In the proposed model it can hold that . In this case the model does not ensure the same numbers of the locomotives of the individual classes in the originating and the destination depot. The model ensures such transfers that are the most advantageous from the point of view of the total costs. If the transport operator requested the same number of locomotives in the originating and destination depots (that means each locomotive must return to the depot where the locomotive was found at the beginning of the planning period), the model should be supplemented by a suitable constraint ensuring it.

The individual connections are arranged according to their scheduled departure times from the originating railway station. That means the connection that is scheduled to depart first has subscript 1 and the connection with the last departure time has subscript .

The model functions as follows.(1)If it is requested that at least two locomotives must be used to serve the connection, the model must assign the requested number of locomotives to this connection. Please note that the model uses locomotives of the same class in such cases.(2)If the connection is served by a group of locomotives, then all the locomotives from the group go together from the departure from the originating depot to the arrival in the destination depot.(3)If it is not possible to move any own locomotive (or any group of the locomotives) after serving the connection to serve the connection or such move is not advantageous from the point of view of the objective function, then the connection is served by a locomotive (or a group of locomotives) departing from one of the originating depots.(4)If no locomotive (or group of locomotives) is available or no move of any own locomotive (or any group of locomotives) is advantageous, then the connection must be served by an external locomotive.(5)It was written in the previous text that it is not possible to serve some connections by some locomotive classes. The fact that the connection can be or cannot be served by the locomotive class is modelled using an incidence matrix . Elements of the matrix take value 0 or 1. It holds that if then and if then .(6)If the locomotive (or group of locomotives) serves a subsequent connection after serving the previous connection, the move between the connections must be admissible from the point of view of time. The admissibility of the locomotive which moves to serve the connection after serving the connection is ensured using an incidence matrix . Elements of the matrix also take value 0 or 1. If it holds that for a pair of the connections and , then ; otherwise .(7)If the own locomotive (or group of locomotives) cannot move to serve the next connection or the move is not advantageous, then the locomotive (or group of locomotives) deadheads to the destination depot.

*Summary of the Symbols Used in the Mathematical Model.* The symbols are as follows: : The number expressing how many locomotives of the class can be allocated to the depots (the number of locomotives the transport operator owns). : The variable costs that correspond to deadheading the locomotive of the class to serve the connection after serving the connection and the service of the connection . : The variable costs that include deadheading the locomotive of the class from the depot to serve the connection and the service of the connection . : The variable costs resulting from the situation when the locomotive of the class is deadheaded to the depot after serving the connection . : The price the transport operator pays for serving the connection by the external locomotive to the external transport operator. : The fixed costs related to each locomotive of the class . : The number expressing how many locomotives of the class we need to serve the connection . : The variable modeling how many locomotives of class are found in the depot at the beginning of the planning period. : The variable modeling the decision on whether the connection will be () or will not be () served by the external transport operator. : The variable that models deadheading the locomotive (or group of locomotives) of class to serve the connection after serving the connection . : The variable that models the locomotive of the class departing from the originating depot to serve the connection (); in other cases . : The variable that models the locomotive of the class deadheading to the destination depot () after serving the connection ; if not then .

The mathematical model has the following form:

#### Profitability Blueprint Series™

##### Sell and Excel! The Path to Profitabilityy

Profit is critical to staying in business, especially for rookies. Get what you need to know to ensure your financial success and professional status in real estate. This essential course delves into issues that affect profitability: listing and sales practices, property marketing, business planning, technology, and organizational tools. Agency, contracts, home inspection, finance, and more are also covered as you get The Basics you need to thrive!

**Sessions Include:**

**Your Marketing Personality**: Explore the cost-benefits of various personal marketing options; compare and contrast institutional and product advertising in depth; focus on creating enticing real estate advertisements, building strong networking systems, and crafting successful marketing designs.

**Listings and You**: Discover how to conduct a confident presentation interview and follow it up with marketing objectives and strategies that will directly benefit the Seller. Learn about appraisal requirements and effective property pricing by participating in a hands on market analysis.

**Finance and the Sales Process**: Review agent duties when working with Buyers and an agent's specific responsibilities when providing effective client service. Investigate how

duties and responsibilities of the agent intertwine by completing a contract in class.

**Home Inspections: **Invest 4 hours into understanding the critical components of real estate inspection today. Learn how to identify problems and recognize environmental hazards such as mold, radon, etc.

**Business and the Details**: Prepare for success by setting goals and objectives, creating a budget, and a working business plan. Understand the rules regarding the Do Not Call registry, the requirements for sex offender notification, and the new issues surrounding crystal meth labs. A review of fair housing and technology ends the course.

## 0 thoughts on “Assignment 1 Karel Solutions Real Estate”

-->